Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

Identifieur interne : 001992 ( Main/Exploration ); précédent : 001991; suivant : 001993

Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

Auteurs : Esther J. Chen [États-Unis] ; Chris A. Kaiser

Source :

RBID : pubmed:12417748

Descripteurs français

English descriptors

Abstract

The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

DOI: 10.1073/pnas.232591899
PubMed: 12417748
PubMed Central: PMC137505


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.</title>
<author>
<name sortKey="Chen, Esther J" sort="Chen, Esther J" uniqKey="Chen E" first="Esther J" last="Chen">Esther J. Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139</wicri:regionArea>
<wicri:noRegion>Cambridge 02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaiser, Chris A" sort="Kaiser, Chris A" uniqKey="Kaiser C" first="Chris A" last="Kaiser">Chris A. Kaiser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12417748</idno>
<idno type="pmid">12417748</idno>
<idno type="doi">10.1073/pnas.232591899</idno>
<idno type="pmc">PMC137505</idno>
<idno type="wicri:Area/Main/Corpus">001960</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001960</idno>
<idno type="wicri:Area/Main/Curation">001960</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001960</idno>
<idno type="wicri:Area/Main/Exploration">001960</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.</title>
<author>
<name sortKey="Chen, Esther J" sort="Chen, Esther J" uniqKey="Chen E" first="Esther J" last="Chen">Esther J. Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139</wicri:regionArea>
<wicri:noRegion>Cambridge 02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaiser, Chris A" sort="Kaiser, Chris A" uniqKey="Kaiser C" first="Chris A" last="Kaiser">Chris A. Kaiser</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Amino Acids (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cell Membrane (enzymology)</term>
<term>Culture Media (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glutamic Acid (biosynthesis)</term>
<term>Glutamine (biosynthesis)</term>
<term>Kinetics (MeSH)</term>
<term>Plasmids (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>RNA Processing, Post-Transcriptional (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide glutamique (biosynthèse)</term>
<term>Acides aminés (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Glutamine (biosynthèse)</term>
<term>Génotype (MeSH)</term>
<term>Maturation post-transcriptionnelle des ARN (MeSH)</term>
<term>Membrane cellulaire (enzymologie)</term>
<term>Milieux de culture (MeSH)</term>
<term>Plasmides (MeSH)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glutamic Acid</term>
<term>Glutamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide glutamique</term>
<term>Glutamine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Membrane cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Culture Media</term>
<term>Gene Deletion</term>
<term>Genotype</term>
<term>Kinetics</term>
<term>Plasmids</term>
<term>Promoter Regions, Genetic</term>
<term>RNA Processing, Post-Transcriptional</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Délétion de gène</term>
<term>Génotype</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Milieux de culture</term>
<term>Plasmides</term>
<term>Régions promotrices (génétique)</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12417748</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>99</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2002</Year>
<Month>Nov</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>14837-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Esther J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaiser</LastName>
<ForeName>Chris A</ForeName>
<Initials>CA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM056933</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM56933</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2002</Year>
<Month>11</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="N">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12417748</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.232591899</ArticleId>
<ArticleId IdType="pii">232591899</ArticleId>
<ArticleId IdType="pmc">PMC137505</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1999 Feb;19(2):989-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Feb;27(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 May 14;153(4):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Mar;13(3):795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1970 May 1;14(1):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5447432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1970 Sep;103(3):770-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5474888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1972 Aug 21;48(4):749-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4404622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1973 Feb 20;50(4):967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4144122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1974;128(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4150855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 Jun;118(3):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4598006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1980 Jul;143(1):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6995441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1980 Jul;108(2):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6997042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1981 May 15;196(2):531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7032510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Jun 1;133(1):135-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1983 Apr;3(4):672-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6343842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6152012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1985 Oct;111(2):243-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2865193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1985;26:1-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2869649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1977 May;130(2):714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">400789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3286617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1990 May 31;190(1):39-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2194797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Oct 30;71(3):463-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1423607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7798155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Sep;5(9):1023-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7841519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Jun 30;137(7):1469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9199164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Nov;13(14):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9392078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kaiser, Chris A" sort="Kaiser, Chris A" uniqKey="Kaiser C" first="Chris A" last="Kaiser">Chris A. Kaiser</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Chen, Esther J" sort="Chen, Esther J" uniqKey="Chen E" first="Esther J" last="Chen">Esther J. Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001992 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001992 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12417748
   |texte=   Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12417748" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020